Simulasi Karakteristik Proses Pembakaran pada Motor Bensin 3000 cc

Rosid Rosid, Viktor Naubnome


Research conducted through the development of a simulation model of the combustion process in the combustion parameters using 3000 cc petrol engine with combustion models correspond to the experimental approach. The purpose of the study by simulations that include combustion and emissions formation in the combustion chamber. The simulation was performed by varying the rotation of 1000 rpm, 1500 rpm, 2500 rpm, 3500 rpm and 4500 rpm, to determine the most optimal working areas at 3000 cc petrol engine. The simulation results show the most optimal working range at 3500 rpm combustion, the fuel starts burning at a pressure of 2318.40 kPa at temperatures of 722.25 K and a crank angle of 716 degrees. The lowest peak pressure 2643.00 kPa at 748.75 crank angle degrees, the highest peak pressure of 4097.80 kPa at 742.25 crank angle degrees. Lowest peak temperature 1954.73 776.50 K at the crank angle degrees, the highest peak temperature 2173.51 755.75 K at the crank angle degrees. Changes of the lower peak pressure to the highest peak pressure range from 64.5%, while the lowest peak temperature change to the highest peak temperature ranges from 89.9%.


Combustion, Simulation, Temperature, Pressure, Emissions

Full Text:



D. Fernandesz, “Pengaruh Putaran Mesin Terhadap Emisi Gas Buang Hidrokarbon (HC) dan Karbon Monoksida (CO),” Saintek, vol. XII No. 1, Padang, 2009.

M. Jonson, “Engine Modeling of an Internal Combustion Engine”, The Shio State University, (2007).

B.F. Magnussen, B.H. Hjertager, “On mathematical modeling of turbulent combustion with special emphasis on shoot formation and combustion”, Combush, vol. 16, p. 719-729. Symp. (Int.), (1977).

V.L. Maleev, “Internal Combustion Engine and Air Pollution”, New York: Harper & Row Publ. Inc. (1945).

F. Tuakia, “Dasar-dasar CFD Menggunakan FLUENT”, Penerbit Informatika Bandung, Bandung, (2008).

W. Willard, Pulkrabek, “Engineering Fundamentals of the Internal Combustion Engine” Pientice Hall, New Jersey.

Y. UST, B. Sahin, A. Safa, “ The Effect of Cycle Temperatur and Cycle Pressure Ration on the Performance of an Irreversible Otto Cycle”, Department of Naval Architecture and Marine Engineering, Yildiz Technical University Besiktas, 34349, Istambul, Turkey, (2011).

A. O. Said, A. K. Gupta, “Fuel injection effects on distribution reaction in a high intensity,” Fuel, vol. 186, p. 248–260, USA, (2016).

Y. Jiotode, A. K. Agarwal, “In-cylinder combustion visualization of Jatropha straight vegetable oil and mineral diesel using high-temperature industrial endoscopy for spatial temperature and soot distribution,” Fuel Processing Technology, vol. 153, p. 9-18, India, (2016).

J. Jung, C. B. Sangjae Park, “Combustion characteristics of gasoline and n-butane under lean stratified mixture conditions in a spray-guided direct injection spark ignition engine,” Fuel, vol. 187, p. 146–158, Republic of Korea (2017).

Machado GB. Methodologies para desenvolvimento de Combustíveis edeterminação da velocidade de propagação de chama em motores de ignição por centelha, D.Sc. Thesis, PUC-Rio, Rio de Janeiro; 2012.


Copyright (c) 2016 LONTAR Jurnal Teknik Mesin Undana (LJTMU )

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Diterbitkan oleh Jurusan Teknik Mesin FST Undana; ISSN Cetak: 2356-3222; ISSN Online: 2407-3555; Alamat Redaksi: Jurusan Teknik Mesin; Fakultas Sains dan Teknik; Universitas Nusa Cendana; Jl. Adi Sucipto PO Box 85001, Telp. 0380-881597; Penfui-Kupang NTT.

View My Stats